Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis.
نویسندگان
چکیده
The segmented body plan of vertebrate embryos arises through segmentation of the paraxial mesoderm to form somites. The tight temporal and spatial control underlying this process of somitogenesis is regulated by the segmentation clock and the FGF signaling wavefront. Here, we report the cyclic mRNA expression of Snail 1 and Snail 2 in the mouse and chick presomitic mesoderm (PSM), respectively. Whereas Snail genes' oscillations are independent of NOTCH signaling, we show that they require WNT and FGF signaling. Overexpressing Snail 2 in the chick embryo prevents cyclic Lfng and Meso 1 expression in the PSM and disrupts somite formation. Moreover, cells mis-expressing Snail 2 fail to express Paraxis, remain mesenchymal, and are thereby inhibited from undergoing the epithelialization event that culminates in the formation of the epithelial somite. Thus, Snail genes define a class of cyclic genes that coordinate segmentation and PSM morphogenesis.
منابع مشابه
Snail genes at the crossroads of symmetric and asymmetric processes in the developing mesoderm.
Retinoic acid (RA) signalling ensures that vertebrate mesoderm segmentation is bilaterally synchronized, and corrects transient interferences from asymmetric left-right (L-R) signals involved in organ lateralization. Snail genes participate in both these processes and, although they are expressed symmetrically in the presomitic mesoderm (PSM), Snail1 transcripts are asymmetrically distributed i...
متن کاملShisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos.
In vertebrate somitogenesis, FGF and Wnt signals constitute a morphogenetic gradient that controls the maturation of the presomitic mesoderm (PSM) as well as the transition to segmental units. It remains unclear, however, whether there is a regulatory mechanism that promotes the transition by a direct regulation of FGF and Wnt signaling in the PSM. Here we show that Shisa2, a member of a novel ...
متن کاملVertebrate somitogenesis: a novel paradigm for animal segmentation?
In vertebrates, the primary segmented tissue of the body axis is the paraxial mesoderm, which lies bilaterally to the axial organs, neural tube and notochord. The segmental pattern of the paraxial mesoderm is established during embryogenesis through the production of the somites which are transient embryonic segments giving rise to the vertebrae, the skeletal muscles and the dorsal dermis. Somi...
متن کاملRARβ2 is required for vertebrate somitogenesis.
During vertebrate somitogenesis, retinoic acid is known to establish the position of the determination wavefront, controlling where new somites are permitted to form along the anteroposterior body axis. Less is understood about how RAR regulates somite patterning, rostral-caudal boundary setting, specialization of myotome subdivisions or the specific RAR subtype that is required for somite patt...
متن کاملReceptor tyrosine phosphatase psi is required for Delta/Notch signalling and cyclic gene expression in the presomitic mesoderm.
Segmentation in vertebrate embryos is controlled by a biochemical oscillator ('segmentation clock') intrinsic to the cells in the unsegmented presomitic mesoderm, and is manifested in cyclic transcription of genes involved in establishing somite polarity and boundaries. We show that the receptor protein tyrosine phosphatase psi (RPTPpsi) gene is essential for normal functioning of the somitogen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental cell
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2006